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Motivation

Disaster detection in dark
underground minesiis
challenging, risking miners and
first responders.

Existing methods fail in low-light
conditions.

Need a solution for better
situational awareness.



Objectives

Develop DIS-Mine for accurate instance segmentation of disaster-
affected areas in low-light underground mines.

Create the ImageMine dataset of low-light underground mine
Images for model validation.

Develop an automatic annotation pipeline for efficient labeling of
mine images.
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Challenges

Low-lightand Poor Visibility Conditions
Instance Segmentation Limitations in noisy data
Accurate Labeling and Dataset Preparation.
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Related works
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Related works

 Primarily addresses feature-level denoising to improve segmentation
performance

« color distortions and reduced contrast, are not extensively explored

« Synthetic data generation
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DIS-Mine Framework
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Image Brightness Improvement Component

« The image brightness improvement component integrates the KinD[1] network with
DIS-Mine to enhance low-light images in the ImageMine dataset.

* The network has three modules:
» Jayer decomposition (reflectance and illumination)
= reflectance restoration
* illumination adjustment

« Training involves calculating loss between low-light and normal image maps,
restoring reflectance, adjusting illumination, and combining them to enhance
brightness.
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Mask R-CNN-based Segmentation Component

The mask loss is the combination of Algorithm 3: Training process of Mask R-CNN Component

weighted dice loss and focal-loss Input: Enhanced Image: Tgn
Output: Instance Mask: Mask, Class Prediction: Class,

Bounding Box: BB
Initialize Mask R-CNN model
Add modified mask loss to the multitask loss
Minimize the loss and update weights
Mask, Class, BB < Mask R-CNN(/gn)
Return Mask,Class, BB

ﬁtotal — gclass + Eb0)5 + gw-Dice + Efocal

N B W N e

EFast-R-CNN Eenhanced-mask
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Instance Segmentation with SAM integration
Component

Generated bounding box and
class from Mask R-CNN-based
segmentation componentis

mask decoder
A A

used as prompt for SAM[4] ‘; prompt encoder st
image :
image bounding class
embeddings as box
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Mask Alignment with Feature Matching

Algorithm 4: Mask Alignment Process

Input: Enhanced Image: Ign
Output: Refined-Mask: M askfina
1 Masky,Class, BB <
Mask R-CNN-based Segmentation Component(/gn)

Mask; < Instance Segmentation component(/;, Class, BB)
Alignment using ORB feature-matching algorithm
aligned_maski < ORB_alignment(M ask;, M ask;)
aligned_masks < ORB_alignment(M ask,, M ask;)
combined_mask +

intersection(aligned_mask1, aligned_masks)
7 dilated_mask < dilation(combined_mask)
8 Maskina < erosion(dilated_mask)
9 Return M askfina
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ImageMine Dataset

. & « 510 images manually annotated
& _—y using VGG image Annotator

* Rest are automatically annotated




ImageMine Dataset Pipeline
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Experimental Setup

* We consider a train set with six classes — people, equipment, road, wall, roof,
corridor

* We evaluate the DIS-Mine framework on ImageMine Dataset.
* We also evaluated performance in two different dataset[2][5].

* DIS-Mine predicts the instance mask.

* We evaluate the performance using F1-score, mloU.

* We compare with other state-of-the-art methods [2][3][4][6].
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Dataset

ImageMine dataset.[our own]

LIS-dataset[2] -

Pairs of low-light and normal light images
Total eight classes - bicycle, car, Motorcycle, bus, bottle, chair, dining table, tv.

DsLMF+[5] -
Underground longwall mine images

Total six classes - mine personnel, hydraulic support guard plates, large coal,
towlines, miners’ behaviors, and mine safety helmets
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Experimental Results

Dataset Model F1-score mloU
SAM 68.7% 60.0%
ImageMine Mask R-CNN 65.0% 56.0%
(Ours) Mask2Former 67.2% 58.0%
DIS-Mine (ours) 70.2% 60.5%
SAM 61.0% 47.5%
Mask R-CNN 58.0% 44.6%
LIS-dataset Mask2Former 62.0% 45.8%
ISD 61.7% 49.8%
DIS-Mine (ours) 63.2% 47.0%
SAM 84.0% 71.0%
DsLMF+ Mask R-CNN 80.0% 68.0%
Mask2Former 83.0% 72.0%
DIS-Mine (ours) 86.0% 72.0%
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Experimental Results

Loss Comparison mloU Comparison F1-Score Comparison
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Experimental Results

Fig: DIS-Mine prediction results on samples from our collected Image-Mine Dataset
(Inputin top, ground truth in middle and generated mask in the bottom)
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Experimental Results

Fig: DIS-Mine prediction results on samples from DsLMF+ Dataset
(Input in top and generated mask in the bottom)
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Experimental Results

Class-Wise performance analysis for DIS-Mine on ImageMine

Surrounding consists of

geometrically similar Class Fl-score IoU
classes such as roads,
walls and roofs. People 72.6% 72.6%
Equipment 71.4% 62.1%
Corridor 88.3% 78.5%
Surrounding 64.0% 52.4%
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Conclusion and Future Work

DIS-Mine effectively segments images of underground mines in low-light conditions
using advanced enhancement and segmentation techniques.

DIS-Mine, showing superior F1-score and mloU compared to baseline models.

Model integration and mask alignment enhance robustness against noise and poor
contrast.

Evaluated DIS-Mine across multiple low-light datasets, proving its generalizability.

Incorporate multimodal data (e.g., thermal, LIDAR) to improve segmentation in
complex environments.
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